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ABSTRACT
Illicit website owners frequently rely on traffic distribution systems
(TDSs) operated by less-than-scrupulous advertising networks to ac-
quire user traffic.While researchers have described a number of case
studies on various TDSs or the businesses they serve, we still lack an
understanding of how users are differentiated in these ecosystems,
how different illicit activities frequently leverage the same advertise-
ment networks and, subsequently, the samemalicious advertisers.
We design ODIN (Observatory of Dynamic Illicit ad Networks), the
first system to study cloaking, user differentiation and business in-
tegration at the same time in four different types of traffic sources:
typosquatting, copyright-infringingmovie streaming, ad-based URL
shortening, and illicit online pharmacy websites.

ODINperformed 874,494 scrapes over twomonths (June 19, 2019–
August 24, 2019), posing as six different types of users (e.g., mobile,
desktop, and crawler) and accumulating over 2TB of data. We ob-
served 81%more malicious pages compared to using only the best
performing crawl profile by itself. Three of the traffic sources we
study redirect users to the same traffic broker domain names up
to 44% of the time and all of them often expose users to the same
malicious advertisers. Our experiments show that novel cloaking
techniques could decrease by half the number of malicious pages
observed. Worryingly, popular blacklists do not just suffer from the
lack of coverage and delayed detection, but miss the vast majority
of malicious pages targeting mobile users. We use these findings to
design a classifier, which can make precise predictions about the
likelihood of a user being redirected to a malicious advertiser.
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1 INTRODUCTION
Online advertising subsidizes the World WideWeb: ads monetize
user visits and pay for infrastructure. Unsurprisingly, as a lucra-
tive business, online advertising also invites abuse. For instance,
questionable or illicit sites automatically redirect users to advertis-
ers [1, 3, 21, 24, 25, 34, 38, 45, 55] without user consent. Dubious
redirections of visitors also frequently expose them to malicious
content, including deception, phishing, scams and malicious down-
loads [1, 16, 21, 28, 34, 36, 38, 45, 59]. While the research community
has documented a number of abusive practices through specific
case studies [1, 4, 8, 15, 16, 21, 22, 24, 25, 27, 28, 34–36, 38, 45, 49–
51, 55, 58, 59, 63, 66], we still lack a general understanding of how
malicious advertisement ecosystems interact with each other, of the
specific roles different entities assume, and, more generally, of how
different the landscape is, between mobile and desktop web users.

Generally, (legitimate) advertising on the web works as follows.
Websites include content from sources called ad publishers, who
themselves leverage a complex system of advertisement networks to
choose, on-the-fly,which ad (provided by an advertiser) to display for
a given user, during a given browsing session. To maximize engage-
ment (“clicks”), displayed ads are selected through a combination of
behavioral user profiling and a bidding process among advertisers
based on user profiles. This model is called “pay-per-click” (PPC)
since ad publishers are rewarded as a function of the number of clicks
generated by their website. We refer the reader to Pearce et al. [41]
for an extensive description of the advertising ecosystem.

Clicks require active user participation. A much more aggres-
sive technique is to instead automatically redirect users to a target
destination website – in such a context, ad publishers are compen-
sated through pay-per-redirect (PPR). Both PPR and PPC form the
bedrock of the traffic distribution systems (TDSs) used by advertise-
ment networks to direct traffic to advertisers. PPR, however, is far
more intrusive than PPC, and is frequently observed along with
malicious or abusive behavior [1, 38].

Using terminology from the literature [3, 25], TDSs connect traffic
sources—pages visited by users for content (e.g., free movies), for ser-
vices (e.g., URL shorteners), or by accident (e.g., typing mistake)—to
destination pages (advertisers). Traffic brokersmatch traffic sources
(and potentially user profiles) with the highest bidding advertiser. In
thePPRmodel, this often involves abrief visit to oneormore separate
websites run by the TDS operators before reaching the destination
page. This entire journey from traffic source, to intermediate traffic
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brokers, to destination (or “landing”) pages, constitutes a redirection
chain.

Importantly and differently from legitimate advertisers,malicious
destination page operators are agnostic to the techniques TDSs use
to bring traffic to their websites. Indeed, these malicious operators
are merely customers of the TDSs. These operators’ ownmonetiza-
tion strategies rest on other techniques, such as, deceiving users into
sharing sensitive information, stealing funds, or serving a malicious
or potentially unwanted programs (PUPs).

Contributions. This paper 1) describes a measurement infrastruc-
ture called ODIN (Observatory of Dynamic Illicit ad Networks)
which allows us to compare how campaigns differentiate over mul-
tiple types of users (from different vantage points, using different
browsers, hardware, etc.), 2) presents novel results from at-scale data
collection using ODIN, and 3) introduces possible countermeasures
based on these findings. While previous studies considered ques-
tionable ads relevant to specific ecosystems, or relying on specific
techniques, the key novelty is in ODIN’s ability to take a broader
view, which enables us to discover how questionable advertisers
perform per-user differentiation to monetize their traffic.

ODIN’s goal is to offer a systematic exploration of various TDSs
used by questionable content providers. To do so, ODIN collects
screenshots, HTTP communications, content and browser logs. We
semi-automatically label 101,926 pages that ODIN collected, and we
use these labels to perform a series of automatic analyses of page
contents to better understand the threats these TDSs pose.

In the past, researchers have either individually studied illicit traf-
fic sources [1, 25, 30, 35, 38, 45, 55] or focused on a single malicious
activity [8, 16, 21, 34, 44, 49]. Expanding this body of work, we study
multiple traffic sources and a wide variety of malice stemming from
them.We seedODINwith four distinct types of traffic sources: (i) “ty-
posquatting sites” [55] (e.g., yotube.com), (ii) copyright-infringing
sites that stream pirated movies [15], (iii) ad-based URL shorten-
ing services that shorten URLs in return for exposure to potentially
malicious ads [38], and (iv) unlicensed online pharmacies [24]. We
choose these traffic sources as they are known to redirect users to
malicious or illicit landing pages. At the same time, previous studies
have generally not exhibited much overlap between these various
activities, which allows us to test the hypothesis whether TDSs are
“vertically integrated” (i.e., each criminal coterie uses their own TDS
infrastructure) or if they cross-cut multiple segments. Earlier results
[24] hinted at vertical integration, at least in the pharmaceutical
ecosystem; revisiting this finding a decade later, we discover that
vertical integration no longer holds.

The vast majority of papers before 2016 [1, 4, 8, 17, 24, 25, 27, 28,
35, 38, 45, 55, 62, 63, 66] simply did not consider cloaking. Even after
2016, most papers [15, 19, 21, 22, 34, 49, 58, 59], only accounted for
a couple of aspects of cloaking. ODIN assumes all of the participants
in the TDS ecosystem are malicious and attempt to cloak their activ-
ities, or evade detection through blocking. Despite this adversarial
landscape, we show that ODIN can successfully reconstruct redirec-
tions. As a side-benefit, ODIN allows us to unearth a wide variety
of cloaking techniques.

Crucially, ODIN emulates a variety of different profiles (web
crawler, desktop users, mobile users) – using a combination of user

emulation and actual mobile hardware – and compare TDS behav-
ior across these different user profiles. ODIN also relies on various
proxying techniques to examine IP address-based differentiation in
TDS responses. We open sourced ODIN on GitHub [18] and make
the collected and labeled data available for researchers upon request.

Results. Using ODIN, we scraped webpages 874,494 times over two
months (June 19, 2019–August 24, 2019), accumulating 2TB of data.
Posing as six different types of users, ODINfinds 81%moremalicious
and 96%more suspicious landing pages, compared to visiting pages
only using the user profile which experienced the most malice. We
find that mobile users are exclusively targeted with deceptive sur-
veys and illicit adult content tailored to them. Conversely, desktop
users are exposed to technical support scam pages and deceptive
downloads that mobile users never see. Our experiments also show
that some state-of-the-art blacklists do not include the vast majority
of malicious destination pages mobile users are exposed to.

From a criminal ecosystem standpoint, we find evidence of TDS
reuse across illicit activities. Some traffic source pairs share 44% of
traffic broker domains they use. TDSs also redirect to the same kind
of landing pages, and nearly half of the different types of malicious
activities we found were present in the typosquatting, copyright in-
fringing, and theURLshortening ecosystems. Sharedmalice includes
technical support scams [34, 50], deceptive surveys [8, 21], deceptive
downloads [1, 59], and other scams. At the same time, certain types
of abuse are prominent at only one TDS. For example, copyright-
infringing sites force users’ socialmedia activities such as tweets and
shares. URL shortening services advertise crypto-currency related
scams. Typosquatting domains redirect to fake identity protection
phishing sites.

Miscreants still leverage IP reputation, user agent and the re-
ferrer HTTP header fields to cloak their activity. Additionally, we
observe that most of the malicious entities leverage simple tech-
niques to block or to cloak their activity, but do not appear to use
more advanced techniques such as the detection of mobile phone
emulation or WebRTC-based proxy detection. Comparing results
obtained from a pool of 240 IP addresses with those obtained from a
single vantage point, we find that, in addition to rate limiting, some
TDSs attempt to escape detection by disproportionately redirecting
suspected crawlers like ODIN to benign pages instead of their usual
landing pages, resulting in half as many malicious pages observed.

2 RELATEDWORK
Our paper extends multiple areas of research that have explored
TDSs [16, 27, 28, 36, 50, 51, 59, 66], illicit traffic sources [1, 4, 15, 24,
25, 34, 35, 38, 45, 49, 55, 63] and cloaking [17, 19, 39, 62].

TDSs. Early research of TDSs has focused on malicious advertising
in Alexa top domains [27, 28, 66]. While popular domains might
redirect users tomalicious destination pages from time to time, ques-
tionable businesses frequently redirect users to abusive or malicious
landing pages. Even though researchers have studied these poten-
tially dangerous websites [24, 35, 38, 45], there has been no research
on how they constitute together a complex interconnected network
supporting online crime. Closest to our work is research by Vadrevu
andPerdisci [59] that focusedon investigating trafficbroker domains
to find more malicious destination pages. Conversely, our goal is to
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study and compare traffic sources, while quantifying the effects of
user differentiation and cloaking techniques.
Illicit traffic sources. To gain a clear picture of the malicious ad-
vertisement ecosystem, we study four traffic sources— typosquat-
ting, ad-based URL shortening services, copyright-infringing movie
streamingwebsites, and illicit pharmacies.We selected these sources
based on the diversity of how they attract user traffic.

Typosquatters registermisspelled variants of domainnames, such
asyotube.com, to profit fromusers’ typingmistakes.Despite having
been studied for over fifteen years [1, 4, 6, 11, 20, 29, 35, 42, 48, 53–
56, 58, 63, 65, 67], typosquatting still occurs, with little abatement.
Complementary to this body of work, we look at typosquatting as
part of a broader criminal ecosystem.We also account for the impact
of cloaking, as well as focus on howusers are differentiated, and how
they end up on malicious pages.

URL shortening services transform complex URLs with user-
friendly shorter variants. Nikiforakis et al. [38] have shown that
third-party ads used in ad-sponsored URL shortening services ex-
pose users to a diverse type of abusive content, including drive-by
downloads, online scams, and illicit adult contents.

Copyright-infringing movie streaming sites offer pirated content
to profit from users intentionally or accidentally clicking on ads
while trying to watch movies. Researchers have focused on the in-
frastructure supporting the sharing of pirated content [15], but have
not investigated abuse. Closer to our research, Rafique et al. [45]
studied sport-streaming sites that expose users to malicious con-
tent similar to illicit movie streaming sites. Studying pirated movie
streaming sites gives us a complementary datapoint.

A fewstudies [24–26, 30, 32, 62] have investigatedhowunlicensed
online pharmacies acquire traffic, through email spam or search poi-
soning finding early evidence of cloaking (e.g., HTTP header and
cookie-based). Interestingly, these studies all suggest that the un-
licensed online pharmaceutical industry appears to be a relatively
“closed” ecosystem, at least in the early 2010s. Traffic brokers serv-
ing pharmacies, in particular are (or were) rarely shared with other
businesses. By complementing online pharmacies with three other
traffic sources, we see that while pharmaceuticals are indeed an
outlier, there is a significant amount of overlap between other types
of activities.
Malice on theWeb.Another body of work focused on uncovering
different types of malice, such as drive-by-downloads [16, 44], phish-
ing pages [31, 64], technical support scams [34, 49] or survey scams
[8, 21]. Our research is different in that we consider a wide variety
of abuse in the TDSs we study.
Cloaking. TDS operators and other miscreants often engage in
“cloaking.” In trying to determine how the literature addresses cloak-
ing, we surveyed twenty-three measurement papers [1, 4, 8, 15, 17,
19, 21, 22, 24, 25, 27, 28, 34, 35, 38, 45, 49, 55, 58, 59, 62, 63, 66] that
engage in active crawling ofWeb content from TDSs, illicit traffic
sources or destination pages.

With the exception of Wang et al. [62], most papers published
before 2016 did not take explicit steps to study or mitigate adversar-
ial cloaking. On the other hand, most papers published after 2016
(andWang et al. [62]) use a combination of one or more of the six
followingmethods: (i) changing the user-agent, (ii) setting an HTTP
header field, (iii)mitigating browser fingerprinting, (iv) changing the

type of IP address used, (v) rotating through IP addresses to eschew
rate limitation, and (vi) avoiding proxy detection.Whilemost papers
only consider HTTP header based cloaking techniques, a couple of
papers [17, 21, 59] combine multiple defenses. ODIN combines all
of these techniques to mitigate cloaking attempts.

3 DATACOLLECTION: ODIN
Our data collection must fulfill several objectives. The primary goal
is to understand if and how disparate traffic sources are leveraging
the same traffic brokers and cloaking techniques. At the same time,
we cannot exhaustively search for all possible malicious activity on
the web; we thus will have to focus on a subset of possible sources,
that must be diverse and representative. Second, our infrastructure
must be resilient to cloaking and evasions by TDS operators.

Main Orchestrator

Internet

Target Creation and 
Selection

Typosquatting Module

Search Module

Copyright Module

List Module

Customized Mitm Proxy

Desktop 
Crawler

Emulated 
Phone

Real 
Phone

Analysis 
Modules

DNS 
Module

Multiprocessing Crawling Scheduler
Feature 

Extraction 
Modules

Config File

Squid ProxiesSquid Proxies

DB
Database Module

Figure 1: High-level overview of ODIN.

Tomeet theseobjectives,wedesigned thecollection infrastructure
represented in Figure 1. For each traffic source we study (typosquat-
ting, ad-based URL shortening, illicit movie streaming, and illicit
pharmacy sites) we have a separatemodule to select URLs that ODIN
visits. These URLs are then ordered by a scheduler to avoid being
detected by TDSs that are looking for multiple visits from the same
IP address in quick succession. In an effort to determine differences
in treatment between user types, each URL is visited by (a combina-
tion of) various collection agents: three desktop crawlers, an agent
mimicking a Google bot, an emulated phone, and an actual phone.
Finally, ODIN extensively relies on proxies to pretend the visits are
coming from various, unrelated connections.

3.1 Target Creation and Selection
We generate a new set of target URLs for every run of an experiment.
The only exception is the URL shortening dataset, where we create
target URLs once, before starting the experiment.
Typosquatting. The main typosquatting dataset typo-main con-
sists of all possible Damerau-Levenshtein distance one [9] variants
of Alexa’s top 500 domain names. Using the DNSmodule, we select
only those domain names that respondedwith valid NS and A records.
We generate the full list of typosquatting domains and randomly
select 2,000 domains for every collection round.
URL shortening services. To create URL shortening targets, we
create URLs pointing to Alexa’s top 20 domain names at 15 URL
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Mobile
User Profile User-agent Emulation Referrer Proxy

Vanilla Desktop Windows Chrome No None Yes
Referrer Desktop Windows Chrome No Google Yes
No-Proxy Desktop Windows Chrome No Google No
Google Bot Google Bot No None Yes
Emulated Phone Android Chrome Yes Google Yes
Real Phone Android Chrome – Google Yes

Table 1: Summary of user profiles. All experiments are con-
ducted from Linux servers, except “Real Phone” for which a Nexus
6P Android was used.

shortening services. This selection is a trade off between the limited
number of target URLs that our crawling infrastructure can visit
daily and the expectation that our infrastructure can reach more
malicious campaigns. For each experiment, we use all 300 target
URLs in our URL shortening dataset.
Illicit pharmacies. We query the Google Search API with a set
of pharmaceutical-related search terms curated by Leontiadis et al.
shown to produce strong coverage [24, 25]. We freshly generate and
select a maximum of 2,000 URLs for each experiment we run.
Copyright-infringingwebsites.Wecollect URLs from softonic.
com, a site crowdsourcing answers and rankings of answers to all
sorts of user questions. The site’s statistics claimed that tens of thou-
sands of users voted on sites in their list of “best freemovie streaming
sites.” We compare this site’s crowdsourced solution to querying
Google’s search API with related keywords and movie titles. We
found that Google appears to effectively scrub copyright-infringing
sites from its search results as we only find a fraction of the sites
listed on softonic.com. For each experiment, we harvest 300 URLs
from approximately a hundred sites.

3.2 User Emulation
One of our key objectives is to examine how users are differentiated.
To do so, ODIN emulates various types of users. As a side-benefit,
our setup allows us to discover some of the cloaking techniques
miscreants use. More specifically, we scrape each URL target six
times using the six different user profiles, as shown in Table 1. For all
these profiles, we rely on a fully-featured, headless Chrome browser,
governed by Selenium.
Desktop users. The vanilla desktop crawler mimics a desktop user
browsing with Google Chrome using a commonWindows Chrome
User-agent. To combat referrer-header-based cloaking as observed
by previous work [24, 25], we also use a modified version of the
vanilla crawler where we set the HTTP referrer header to https:
//google.com for our initial query. ODIN visits each target URL
with and without an anonymous (Squid) proxy to better understand
the impact of proxy usage on measurements.
Mobile Phone users.We emulate amobile phone browser to study
ourhypothesis thatTDSs treat phoneusers differently thanhow they
treat desktop users. We use Chrome’s mobile emulation option, and
additionally set the correctwindow size, pixel ratio, andUser-agent
to emulate a popular Android phone. To understand if TDSs detect
phone emulation (which has been shown to be trivial [60]), we also
use a Nexus 6P phone with a modified version of Chromium. Faulty

testinghardwarecaused thephone tocrashandshutdownduringour
experiment. As a result, we were only able to scrape around 50% of
target URLs from our phone. Fortunately, due to ODIN randomizing
the target URLs, this error has the same effect as random sampling.
Google Bot. Certain malicious sites hide their activity or show a
search engine optimization page when visited by Google’s crawler
[24]. To observe howTDSs react when encountering a search engine
crawler, we set the User-agent to Google’s crawler.

3.3 Cloaking Detection and Avoidance
A particularly important feature of ODIN is to explicitly consider
adversarial behavior fromTDSs, and to attempt to detect, and circum-
vent, cloaking. This is partly done through themultiple scrapes from
various user types described above, and complemented through the
following assortment of techniques.
Self rate-limiting.Certain traffic sources, especially typosquatters,
cloak their malicious activity after only a few visits from the same
IP address. To combat IP-based cloaking, ODIN’s scheduler tries to
schedule relatedURLs as far apart in time as possible. TwoURLs com-
ing from the same traffic source are considered related; in addition,
using the DNS module, ODIN determines that two URLs are related
if their domains share identical NS or ADNS records. ODIN further
attempts to mitigate IP-based cloaking by randomly sampling URLs
from the four traffic sources to only visit at most 3,000 URLs every
other day.
Anti-browser fingerprinting. Some of the simplest methods to
figure out automation include the detection of User-agents and
the lack of JavaScript execution or handling of cookies. These are
already taken care of by using a full featured browser, as discussed
above. To address some of the slightly more sophisticated browser
fingerprinting approaches we modify properties of our browser by
changing the window size, adding extensions, and adding a default
language. The array of browser fingerprinting techniques that en-
able stateless tracking is vast and therefore our approach may not
be able to cover all possible techniques, e.g. an attacker recognizing
ODIN via canvas fingerprinting [5].
IP rotation.Miramirkhani et al. [34] observed that typosquatters
cloak malicious activity if their pages are visited from a large dat-
acenter’s IP addresses. Thus, ODIN uses university IP addresses
(one per profile) and a /24 subnet from a research-friendly, but less
well-known VPS provider [43]. We do not leverage residential IP
addresses to avoid ethical quandaries [33], and because research [19]
has shown that using university addresses is a good alternative.
Proxy detection avoidance. The simplest way to utilize multiple
IP addresses is to use proxies which can unfortunately be detected.
To avoid proxy detection and since we control the proxy software
deployed on the aforementioned vantage points, we scrub headers
such as the via and the forwarded_forHTTP headers. To study if
there are attackers who leverage more advanced proxy detection
(e.g.,WebRTC-based detection),we also collect pages using a crawler
that does not use proxies. Additionally, we emulate mouse move-
ments to address user behavior-based detection. In the case of sites
streaming pirated movies, we also click on the play button, as a user
would, to trigger stealthy HTML overlay redirections.
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3.4 Experiments
In this paper, we use ODIN to collect data through two experiments.
Main experiment. In this experiment our goal is to understand the
shared dependencies between the four traffic sources and differen-
tiation of phone and desktop users. For the Main experiment, ODIN
collected 490,094 pages during a two-month period. Altogether, for
the Main experiment, we visited every URL six times from six dif-
ferent IP addresses to address user differentiation and cloaking.
IP-Cloaking experiment. The goal of our secondary experiment
is to quantify and better understand IP-address-based cloaking. In
this experimentwe useODIN to visit pages using two different types
of anonymous proxies. The first proxy uses only one IP address,
while the second proxy rotates through 240 different IP addresses.

This experiment presents a couple of other differences compared
to the aforementionedMain experiment. ODIN uses only four out
of the six available user emulations. We do not visit pages using
a real phone, and we do not use our “No-Proxy” profile explained
in Section 3.2. On the other hand, we use five other datasets sam-
pling 2,000 benign domains from Alexa’s top 1 million list [2], 6,000
typosquatting domains targeting less popular Alexa domains [55],
2,000 domains targeting Alexa popular pharmacy domains, 1,000
domains from PhishTank [40], and 5,000 domains from SurBL [52].

By repeating the IP-Cloaking experiment three times between
June 24, 2019 andAugust 19, 2019, we collected 441,457 pages finding
that when we use multiple IP addresses, we observe significantly
more malicious destination pages.

4 DATA LABELING
To understand potential infrastructural overlap between different il-
licit activities aswell as user differentiation inTDSs,ODINaltogether
visited 78,668 webpages over two months (June 19, 2019–August
24, 2019). Posing as different “users” (crawlers, desktop, and mobile
users) overdifferent IPaddresses,ODINendedupperforming874,494
separate URL visits, fromwhich it collected 931,551 pages,1 which
produced over 2TB of screenshots, browser events, and archived
HTTP communications.

Unfortunately, we have no externally-provided, reliable labels
telling us which pages are malicious, abusive, or illicit. To address
this problem, we start by semi-automatically labeling 101,926 pages
into fine-grained categories. We then automatically extrapolate the
manual labels to the remaining 829,625 pages. We create specific
classification rules, classifiers, or collect additional information for
certain labels, including illicit pharmacies, malicious downloads and
impersonating pages. As a by-product of this classification, we con-
clude this section by discussing the feasibility of predicting whether
a user will be redirected to a malicious landing page solely based on
the redirection chain traversed.

4.1 Labels
Table 2 summarizes the labels we use to classify destination pages
ODIN visits. These labels express the different kinds of abuse ODIN
encountered, and can be grouped into five classes: error, benign,
illicit, suspicious, and malicious.

1Scraping a URL results in multiple pages and screenshots collected, if newwindows
are opened in the browser automatically.

Label Classes Labels

Error Crawl Error, Error, Blocked
Benign Empty, Parked, Original, Adult, Gambling, Online Pharmacy, Defensive
Illicit Illicit Pharmacy, Keyword Stuffed, Affiliate Abuse, Illicit Adult
Suspicious Survey, Download, Other
Malicious Technical Support Scam, Crypto Scam, Other Scam, Deceptive

Download, Malicious Download, Deceptive Survey, Impersonating,
Phishing, Forced Social, Black hat SEO, Other Malicious

Table 2: Summary of labels and label classes.

Error labels.We label errors caused by our infrastructure as “crawl
error,” most frequently due to one of our proxies not working.When
we are explicitly blocked, thenwe tag the page as “blocked.” All other
errors are labeled as “error.”
Benign labels. We label pages as “empty” when we find little or
no content. For simplicity the “parked” label aggregates together
pages consisting of ads, trying to sell domain names, under construc-
tion, under-developed or serving an HTTP server default page. The
“adult” and “gambling” labels include any related content, for exam-
ple including adult games, dating sites, and lotteries. Pharmacies
that do not leverage compromised sites are labeled as “pharmacy.”
All benign pages with substantial content that do not fit any of the
other benign categories are labeled as “original content.” We label
defensive registrations where brand owners proactively register the
typosquatting variants of their domain name as “defensive.”
Illicit labels. We label all online pharmacies leveraging compro-
mised sites for black-hat search engine optimization [24] and store-
front hosting as “illicit pharmacy.” When we visit these same pages
posing as a Googlebot, they often present pages full of keywords, in
an effort to game search-engine rankins and attract more visitors.
We label these pages as “keyword stuffed.” Sites abusing affiliate pro-
grams by automatically redirecting users to advertisers are labeled
as “affiliate abuse.” In a couple of cases, ODINwas redirected to adult
pages of dubious legality.Wediscard these screenshots, only keeping
their hashes, and label the corresponding pages as “illicit adult.”
Suspicious labels.When ODIN is redirected to suspicious pages
offering a download or a survey, but there is no deception involved,
then we label them as “download” or “survey” respectively. When
a page is engaging in suspicious activities (for example an otherwise
empty page is asking us to enable notifications) we then tag the page
as “other” as we are not sure about the intent.
Malicious labels.When deception is involved, we label download
and survey pages as “deceptive download” or “deceptive survey.”
Deceptive download pages try to scare users into downloading files
telling them, for example, that their flash player is outdated or warn-
ing them that they might have vulnerabilities or even viruses. When
a downloaded file ismalicious, we then label the page as a “malicious
download” if the page does not have another malicious label.

We label pages informing us that we have been selected to receive
free products or money as “deceptive survey” or “other scam” de-
pendingonwhetherfillingout a survey is required.Often thesepages
ask users to perform several tasks such as filling out surveys, asking
for personal information, and downloading applications. We also
label pages offering high-yield investments or high-paying jobs not
requiring any specific skills as “other scam.” We label pages offering
free crypto currency mining or large amounts of crypto rewards as
“crypto scam.”We label pages that are clearly set up to steal a user’s
personal data as “phishing.” We distinguish pages impersonating
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online services to trick users into sharing their credentials as “imper-
sonating.”We label pages as “tech scam” if they try to scare users into
believing that their machine is infected and that paying for technical
support offered on the page is necessary to clean their computer.

Certain pages craft HTTP redirects to try to automatically initiate
some user action. In particular, we label pages that attempt to force
users into engagement on a social network, like tweeting or sharing,
as “forced social.” Other pages redirect users to a Google search to
manipulate their brands’ or sites’ search ranking: we label these as
“black hat SEO.” Finally, we label pages as “other malicious” when
users are presented with deceptive warnings or error messages, but
where the malicious use case is not immediately clear.

Multiple tag label. URL shortening services might present users
multiple different types of content. We label them as “multi tag,”
to avoid combinatorial explosion in the number of categories our
classifiers will have to predict.

4.2 Clustering and Data Labeling
Using the labels described, we cluster and semi-automatically label
101,926 pages collected between June 19 and July 4 in 2019. These
labels form the bedrock of our subsequent (automated) classification.

We start by leveraging several approaches to cluster pages. These
methods include grouping pages by matching text or perceptual
hash [14], and clustering using the k-nearest neighbor algorithm
(KNN). TheKNNclusteringuses the last layer ofDenseNet 201model
trainedon the ImageNet dataset from theKeras library [7] as features.
Additionally, we use regular expressions based on previous work
[55] to classify parked pages, and simple heuristic rules based on the
HTTP error code received and the text shown to users to find error
pages. These enable us to label 65,276 pages.

The remaining 36,650 pages feature 14,746 unique perceptual
hashes. We randomly selected a page for each different hash, and
then had it manually labeled by at least two researchers. Inter-coder
agreement was high, with a Cohen’s kappa score of 0.81.Whenman-
ual labels did not match, a third researcher broke the tie, or the label
was further discussed as a group when deemed necessary. We then
labeled the remaining 21,904 pages by propagating identical labels
to all pages sharing the same perceptual hashes.

As a final validation check, we randomly selected amaximum of a
hundred screenshots for each label, adding up to 1,607 labels, which
we verified again. Only 43 screenshots (2.67%) had the wrong label.
We find that 42 of these mislabeled pages consisted of error, blocked,
parked or empty labels. Such pages often have little content, which
causes perceptual hashing to be too coarse. However, we find this
inaccuracy acceptable for our purposes, as we do not necessarily
need to distinguish between error pages and under-developed pages.

4.3 Tag Extrapolation
After ourmanual labeling, 388,168 pages in theMain experiment and
441,457 pages in the IP-Cloaking experiment remain unlabeled. To la-
bel these pages we train a RF (Random Forest) classifier. We compile
a list of features both from related work [61] and from our domain
experience. The features include content and DOM-related features
such as the page size, number of frames, number of unique HTML
tags, number/ratio of internal/external links, text size, link to text
ratio, ordinal encoded perceptual hashes of the screenshots, number
of total/unique/ratio of pharmacy-related words and the number of

Label Precision Recall Label Precision Recall

Error 0.87 0.89 Phishing 1.00 1.00
Blocked 0.99 0.98 Deceptive Survey 0.81 0.97
Crawl Error 0.97 0.94 Deceptive Download 0.94 1.00
Empty 0.99 0.91 Tech Scam 0.96 0.98
Parked 0.94 0.84 Crypto Scam 1.00 1.00
Original Content 0.86 0.59 Other Scam 0.90 0.99
Gambling 0.90 0.98 Other Malicious 0.94 1.00
Pharma Store 1.00 0.96 Download 0.95 0.93
Adult Content 0.96 0.96 Survey 0.99 1.00
Keyword Stuffed 0.90 1.00 Other 1.00 1.00
Illicit Adult 1.00 1.00 Multi Tag 1.00 1.00

Table 3: Per-class precision of our multi-class RF classifier.
As our goal was to evaluate precision, we selected a hundred
samples per class, which results in the recall for classes
with many elements to be biased negatively. Recall appears
lower for these classes as the number of positive examples is
disproportionately underrepresented.

unique words. We find the Random Forest classifier performs best
with n_estimators=32 and min_samples_split=2.

Our classifiers have a 97.7% accuracy and 97.0% average precision
over our classes evaluated on a 10% validation set. After predict-
ing labels in our unlabeled datasets, we evaluate the classifier on a
maximum of 100 random samples for each label from the previously
unlabeled dataset. The average precision drops to an acceptable
94.9%. Table 3 lists the per class precision of the RF model. For the
rest of the paper we use the combination of our manual labels and
results from the RF model’s predictions.

5 AUTOMATIC LABELINGMETHODOLOGY
In this section, we describe additional specialized classifiers and
heuristic rules we use to label pages.

We train a Random Forest classifier building on the observation
by previous work [24] that illicit pharmacies will respond with dif-
ferent web content to HTTP queries from our different user profiles.
The model relies on features calculated for all scrapes of a page,
including number/ratio of external links/sources, link to text ratio,
number/unique/ratio of pharmacy-related words, length of domain
redirection chain, landing error code, number of external source
domains. On a test set of 200 sample pages our classifier’s precision
is 97% and the recall is 93.1%.

A typosquatting page is labeled “defensive” if it is owned by a
known brand protection company or directly redirects to the brand
owner’s original domain. Leveraging the methodology of Szurdi et
al. [55], if a typosquatting domain name redirects to a non-malicious
content through one or more different intermediate traffic broker
domain names, then we label it as “affiliate abuse.”

We label a page as “malicious download” if we downloaded a file
from the page, the file was tagged malicious by at least one Virus-
Total vendor, and the page was not previously assigned a different
malicious label. We determine which URLs lead to “forced social”
media actions by searching through the developer APIs of Facebook,
Twitter, and LinkedIn and recording which endpoints correspond
to each action. We find that TDSs discretely redirect users to search
engines (e.g., Google) with specific search queries, presumably for
black hat SEO. We only label a page “black hat SEO,” if the search
terms contains a domain name or a brand name.

Manually investigating HTTP archive files, we verified if any of
the 1,339 pages labeled earlier based on the visual appearance as
“potentially impersonating” are truly impersonating. This leaves us
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Features Comment

Redir chain features
Length of redirection chain [4, 21, 27, 55, 57]
Length of registered domain redirection chain [31, 55]
IP instead of domain at current hop in chain [23, 27, 64]
Top Level Domains seen in redrection chain [27]
Type of redirections (e.g., JavaScript, meta, HTTP) [57, 61]
Number of IP addresses seen in redirection chain

Domain features
Cur/Sum/Avg/Max domain length [23, 31, 55, 57, 64]
Cur/Sum/Avg/Max number of hyphens [23]
Cur/Sum/Avg/Max number of dots [23, 31, 57, 64]

URL features
Cur/Sum/Avg/Max URL length [21, 23, 31, 57, 61]
Cur/Sum/Avg/Max number of URL paramteres [23, 27]
Cur/Sum/Avg/Max length of URL parameters [23]
Cur/Sum/Avg/Max length of URL path [23, 57]
Cur/Sum/Avg/Max number of URL path sub directories [23]
Cur/Sum/Avg/Max length of URL filename [23]
Cur/Sum/Avg/Max content size (except last hop) [4, 27, 55]

Table 4: Features used for predicting malicious redirections
described in Section 5.1. Cur means the value at a given
redirection hop. In the comment column, we list references
to papers that have used similar features often for different
purposes.

with 132manually-tagged “impersonating” pages, whichwe then ex-
trapolate to 1,556 pages by matching each landing URL’s perceptual
hash and domain.

5.1 Proactive Classification ofMalicious Pages
We piggyback on the labeling effort described above to develop a
prototype classifier that can identify whether a user is going to land
on amalicious page.We use features purely based on the redirection
chain and the URLs visited before loading the final destination page.

While researchers experimented with some variant of the fea-
tures we use [4, 21, 23, 27, 28, 31, 55, 57, 61, 64], they either used
features heavily relying on the page loaded or chose a graph-based
approach building on the entire redirection chain graph to calculate
their features. Our approach is different, aswe only rely on the single
redirection chain being traversed to predict if a user will land on
a malicious page, and do not use a pre-computed malicious graph
topology (which might change over time). Furthermore, previous
work usually concentrated on one type of malice (e.g., phishing,
drive-by-download), while our approach is independent of the kind
of malice perpetrated.

Features. Our features include the number of URLs, IPs, and do-
mains visited during redirections and themethod of redirection (e.g.,
JavaScript, meta headers, and HTTP redirection codes). Our domain
name features include the length of the domain name, the number of
subdomains and the number of hyphens used in the domain name.
URL-based features include the length of the URL, the number of
URL parameters, the length of the parameters, the length of the direc-
tories, the number of sub-directories, the length of the filename, and
the amount of content downloaded from the URL.We compute the
previously described features for the last four hops of the redirection
chain.We also derive the sum,mean, andmaximumof these features
across the entire relevant redirection chain. We detail the full list of
181 features used in Table 4.

Copyright Pharmacy Typosquatting URL Shortening All

Error 6,817 (7.51%) 8,057 (10.1%) 41,734 (15.5%) 9,773 (18.2%) 66,381 (13.5%)
Benign 50,594 (55.7%) 45,003 (56.6%) 182,319 (68.0%) 31,223 (58.3%) 309,139 (62.8%)
Illicit 22,928 (25.2%) 25,595 (32.2%) 35,975 (13.4%) 5 (0.01%) 84,503 (17.1%)
Suspicious 8,089 (8.91%) 50 (0.06%) 3,668 (1.37%) 5,278 (9.86%) 17,085 (3.47%)
Malicious 2,334 (2.57%) 737 (0.93%) 4,345 (1.62%) 3,616 (6.76%) 11,032 (2.24%)
Multiple Tags 0 (0.0%) 0 (0.0%) 0 (0.0%) 3,612 (6.75%) 3,612 (0.73%)

All 90,762 79,442 268,041 53,507 491,752

Table 5: Label categories per traffic source.

Android Desktop Google Bot No Proxy Real Phone Referrer

Error 10,580 (11.5%) 10,750 (11.3%) 17,690 (19.8%) 7,579 (8.01%) 6,468 (22.1%) 13,314 (14.3%)
Benign 56,153 (61.2%) 61,033 (64.4%) 60,236 (67.6%) 60,290 (63.7%) 16,517 (56.4%) 54,910 (59.3%)
Illicit 17,566 (19.1%) 15,859 (16.7%) 9,752 (10.9%) 19,249 (20.3%) 4,679 (15.9%) 17,398 (18.8%)
Suspicious 3,610 (3.94%) 3,970 (4.19%) 741 (0.83%) 4,098 (4.33%) 941 (3.22%) 3,725 (4.03%)
Malicious 3,216 (3.51%) 2,152 (2.27%) 372 (0.42%) 2,497 (2.64%) 525 (1.79%) 2,270 (2.45%)
Multiple Tags 529 (0.58%) 930 (0.98%) 215 (0.24%) 940 (0.99%) 124 (0.42%) 874 (0.94%)

All 91,654 94,694 89,006 94,653 29,254 92,491

Table 6: Label categories per crawl profile.

Training a random forest classifier. Using these features, we
train a random forest classifier.We train the classifier on our 101,926
semi-manually labeled pages. We used the random forest classifier
of the Scikit-learn Python library [10] with a maximum depth of
32, maximum features of 40, minimum sample split of eight and 300
estimators.

6 RESULTS
We next use our labels to describe the kinds of pages ODIN finds.
Then, we discuss TDS overlap based on the redirection chains we ob-
serve. We also elaborate on abuse in these TDSs, and how blacklists
perform. Finally, we evaluate our proactive classifier’s performance.

6.1 Label Analysis
We start our analysis by discussing the types of content users are
exposed to in the studied TDSs based on the labels described in Sec-
tion 4. Tables 5 and 6 summarize the number of pages found per label
class. After removing errors, we find that 26.5% of all collected pages
are malicious (2.6%), suspicious (4.0%) or illicit (20.0%).
Phone versus desktop users. Figures 2a and 2b present the page
count, and the associated Normalized Relative Descriptive (NRD)
score for each destination page label, when sliced by traffic sources,
and by crawl profile. We calculate the NRD score by first normaliz-
ing the number of occurrences for each slice separately, and then
normalizing again for each label separately.

Figure 2b shows that phone users are, compared to desktop users,
more often targeted by survey campaigns (e.g., promising prizes in
exchange for filling outmultiple questionnaires and downloading an
app), by forced social media actions and impersonating pages, and,
by illicit adult sites. Conversely, certain kinds of malicious contents,
such as technical support scam pages and deceptive download pages,
are more often shown to desktop users. One possible explanation
for the absence of technical-support scams for phone users is that
increasingly US adults no longer have landlines and solely rely on
mobile phones for communication [46]. Making their smartphone
unusable (via a barrage of pop-ups and alerts) would therefore pre-
vent these users from being able to call the scammers and request
their assistance. Because the mobile and desktop experiments were
conducted at the same time and with the same infrastructure, this is
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Figure 2: Label counts and NRD score heatmap. The NRD score shows which labels are most characteristic of traffic sources (a)
or crawl profiles (b).

the first time – to the best of our knowledge – that a study can con-
clusively state that mobile users are targeted by different malicious
ads, compared to desktop users.

Common malicious destination pages across traffic sources.
Typosquatters appear to expose users to the same malicious content
as illicitmovie streaming sites and ad-basedURL shortening services.
Half of our malicious labels are present in all three of these datasets.
We often observe the same technical support scams, deceptive sur-
vey and deceptive download pages. In Section 6.2, we dig deeper in
whether these similar malicious landing pages are part of the same
campaigns. Contrastingly, the pharmaceutical ecosystem appears
to be largely non-overlapping with these other activities.

Maliceinourdatasets. Figure2ashowsthatpharmaceuticalqueries
present substantially different behavior compared to the other three
traffic sources. We rarely observe malicious landing pages in this
dataset and, as expected, we find mostly illicit pharmacies and key-
word stuffed pages. Surprisingly, ODIN downloads a large number
of malicious files while visiting pharmaceutical-related URLs, which
has not been reported by previous research. Figure 2b shows clear
differences depending on the type of user connecting: phone users
(real or emulated) showdifferent patterns thandesktop (with orwith-
out proxy) users, while crawlers (GoogleBot) land on completely
different pages.

Next, Table 5 shows (ad-based) URL shorteners present the high-
est rate of malicious URLs. These services frequently advertise adult
content, crypto scams and file downloads. Among these destination
pages, crypto scamadvertisementsweremostly unique toURL short-
ening pages. We found that 72% of all unique downloaded files are
malicious, according to Virus Total. This number is 97.5% in the case
of files downloaded from URL shortening services.

Confirming previous findings [1, 55], typosquatting domains lead
us most of the time to parked pages. However, typosquatters also
oftenengage inaffiliateabuse, and inawidevarietyofmaliciousactiv-
ity.Mostcommonmaliciousorsuspiciouscontent includesdownload
pages, deceptive surveys, forced Google searches, impersonating
pages, technical support scams and other scams. Certain malicious
pages are specific to typosquatting pages, including forced Google
searches, surveys (not deceptive), and financial phishing pages. We
discovered 11 typosquatting domains hosting phishing content tar-
geting customers of several large financial institutions. Additionally,
we found one curious case of a forced Google search as part of a cam-
paign launchedbysomebodyattempting todisparageacorporation’s
public image with keywords such as “rip off,” “stock,” and “report.”

Copyright infringing sites most commonly attempt to monetize
user visits by deceiving users into downloading unwanted files.
Moreover, movie streaming sites automatically force users to post
on social media sites to promote their illicit activities.

Cloaking and bot detection.WhenODIN poses as a Googlebot, it
observes only few instances ofmalicious, suspicious or illicit content.
This provides uswith a baseline of howTDSs behavewhen visited by
an automated crawler. We observe that automated crawlers are ex-
plicitly blocked 5%more often than other users and covertly blocked
(by sending users to parked or other error pages) at least 8% more
frequently.

We find no evidence of proxy detection based cloaking. While
not using proxies resulted in a lower error rate, this is due to errors
caused by the proxies. Similarly, it appears that cybercriminals do
not attempt to detect phone emulation. The only difference between
our emulated and real phone experiment is due to a measurement
quirk: the phone infrastructure was not working on the dates when
the crypto scam and the impersonation campaigns took place.
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Label Multi IP Single IP

Error 56,794 62,947
Benign 148,428 144,756
Illicit 10,835 9,937
Suspicious 1,672 1,373
Malicious 2,690 1,287
Multiple Tags 411 429

Table 7: Comparing label categories of usingmultiple versus
one proxy.

We confirm results by previous work [24, 25], that illicit phar-
macies use the HTTP referrer header to cloak their illicit activity.
Conversely, setting the referrer header seems to have the opposite
effect in other TDSs, in that it slightly decreasing the number of
malicious pages discovered. The only exception is black-hat SEO
activity, which almost always requires a referrer header field.

IP-Cloaking experiment. In Table 7, we present the results of the
IP-Cloaking experiment, where we compare the difference between
using 240 IP address versus only one IP address while running the
same measurements.Wefind that usingmultiple IP addresses
leads us to findmore than twice asmanymalicious pages.We
also experience fewer errors, and find more illicit and suspicious
pageswithmultiple IP addresses.Whenmiscreants showus a benign
or error page instead of a malicious one, we face cloaking 86% of the
time and are explicitly blocked only 14% of the time.

We also find that typosquatting domains are more likely to block
our crawler if we use only one IP address, compared to URLs in the
copyright, pharmaceutical, and URL shortening datasets. Moreover,
if a malicious actor does not bother to conceal their activity from
crawlers, they also do not bother performing IP-based blocking. Last,
our phone crawler was proportionally less frequently blocked than
the desktop crawlers.

6.2 TDS Redirection Analysis
We next discuss how the different traffic sources we selected share
traffic brokers, subsequently sending users to similar malicious des-
tinations. To that effect, we analyze TDS redirection chains.

User differentiation. Figure 3 compares how phone and desktop
users might traverse entirely different parts of the TDS ecosystems.
Nodes are domain names; edges signify a redirection between two
domains. Blue domains were visited by our Android crawler, red
domains were visited by our desktop (no-proxy) crawler; purple
domains were visited by both crawlers. Red and blue clusters rep-
resent neighborhoods in the TDS ecosystem visited only by desktop
users, or by phone users respectively. The zoomed example in the
top left corner illustrate edges pointing to red (technical support
scam) and blue (deceptive survey) domain clusters: these clusters
denote landing pages. Purple clusters are source domains with only
outward edges. Figure 3 shows the importance of studying user dif-
ferentiation, as users visiting the same URLs about half of the
time end up on very different pages depending on whether
they use a phone or a desktop for browsing.

Ecosystem infrastructure overlap. Through our previous obser-
vations, we can conclude that different TDSs frequently serve the
samemalicious content to users. Next, we analyze whether these are
the same entities that serve content to the different traffic sources.

Figure 3: Malicious TDS redirection chain graph.

In Figure 4a we present the number of unique malicious, suspi-
cious or illicit unique traffic broker registered domains overlapping
between different TDSs. Even though the illicit pharmacies overlap
with other traffic sources, it is only a fewdomainnames.Weconclude
that often the same entities are redirecting users to malicious land-
ing pages aswe observe 19.2% to 44.1% traffic broker domains
overlap between non-pharmacy TDSs.

In Figure 4b we look at the overlap of unique landing registered
domains across TDSs. We find that while the illicit pharmacy TDS
overlaps only 3.7% to 4.1% of the time with the other datasets. Dif-
ferently, typosquatting, copyright infringing and URL shortening
TDSs overlapwith each other 16.9% to 32.2% of the time.These traf-
fic sources overlap four to eight times more with each other
than they do with illicit pharmacies.
Redirection chain lengths. Like Li et al. [28], we observe that
on average users landing on amalicious, suspicious, or illicit
page, are redirected through 71% to 122% longer chains com-
pared to when landing on a benign page.

Figure 5 illustrates the average redirection chain length for differ-
ent crawl profiles and traffic sources. The pharmacy dataset shows
a much shorter average redirection chain length compared to the
other traffic sources, as usually they redirect users directly to the
store from a compromised webpage. The Googlebot crawler experi-
ences significantly fewer redirections than other agents. Conversely,
phone crawlers are redirected more than the desktop crawlers.
Domain lifetime. As we sample a new set of URLs for every run
of our experiments, we cannot directly compare the lifetime of the
source domains. For the landing and intermediate domains, we can
look at the number of days we see these domains as a rough proxy of
relative usage lifetime in TDSs. Similar to related work [25, 27], we
observe that intermediate domains (traffic brokers) are longer-lived
than landing domains. Using a Mann-Whitney U-test, the difference
is statistically significant for benign pages (5.62 days vs. 3.32 days,
p<0.01, effect size2 0.61), errorpages (3.52daysvs. 2.84days,p ≤ 0.01,
effect size 0.53), and, most interestingly, malicious pages (5.06 vs.
2.46 days, p<0.01, effect size 0.70), where intermediate domains
are active more than twice as long as landing domains. The
difference is not statistically significant (p>0.1) for the illicit (5.09
vs. 4.54 days) and suspicious (6.50 vs. 5.49 days) sources.
Topmaliciousdomains.Welist inTable 8 the topfive trafficbroker
domains that redirect to themostmalicious, suspicious or illicit land-
ing pages. These five domains are responsible for more than

2Effect size is calculated using the Common Language Effect size [37].
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Figure 5: Average domain redirection chain length.

Domains Out edges In edges Mal. out rate Mal. in rate #days

forwrdnow.com 2,595 2,595 0.6019 0.6019 9
7lyonline.com 1,811 1,811 0.6919 0.6919 6
136.243.255.89 2,015 2,015 0.5727 0.5727 35
odysseus-nua.com 4,612 4,621 0.2446 0.2441 35
gonextlinkch.com 912 913 0.9912 0.9901 3

Table 8: Topmalicious traffic broker domains.

halfofall themaliciousredirectionsweencounter.While these
domains also redirect us to benign landing pages, this is generally
not their primary business (only odysseus-nua.com could plau-
sibly claim a majority of its traffic isn’t malicious). They tend to
be long lived: odysseus-nua.com and 136.243.255.89 are used
undisturbed for more than two months, our full study period.

Domains Out edges In edges Mal. out rate Mal. in rate #days

eleseems-insector.com 572 572 0.9930 0.9930 32
turtlehillvillas.com 596 596 0.9916 0.9916 35
gonextlinkch.com 912 913 0.9912 0.9901 3
7lyonline.com 1,811 1,811 0.6919 0.6919 6
addthis.com 659 794 0.7436 0.6171 34

Table 9: Mostmalicious traffic broker domain names

High malicious rate domains. Some traffic broker and landing
domains seem to entirely serve malicious redirections as shown in

Table 9. Even though they are an integral part of malicious ecosys-
tems, it seems that many of them continue operating undisturbed.
All the domains appearing for a few days only in our dataset are
redirecting users to deceptive downloads. Certain domains, such as
eleseems-insector.com, redirect users to technical support scam
pages in the vast majority of the time; 7lyonline.com, redirects
users to forced social media actions such as forced tweets. While
addthis.com is a popular service, we observe that it is often used in
redirection chains that automatically force social media interactions.
TLD usage in redirection chains. Analyzing how domains are
utilized for redirections, we found that, on average, 2.7 times more
unique domains and 2.5 more unique TLDs are leveraged for in-
termediate nodes in a malicious chain compared to a benign one.
Additionally, it is 2.3 times likely for a malicious redirection chain
to lead users to a destination page that uses a new gTLD domain3.

6.3 Google Safe Browsing analysis
We next look into whether Google Safe Browsing (GSB) can help
accurately label TDS destination pages as malicious. To do so, we
compareGSB labels to ourmanually analyzedmalicious label dataset
collected between June 19, 2019 through July 4, 2019.We use theGSB
Update API [12, 13] to determine if a domain or URL is deemed mali-
cious by GSB. In a redirection chain, if any domain or URL is present
in GSB on a given day, we label the page as malicious on that day.
Lack of coverage for malicious pages targeting phone users.
While we find that mobile users are more frequently redirected to
malicious landing pages than desktop users, it seems thatGSB does
not include malicious landing pages shown to mobile users
76% of the time. We conclude that not only are miscreants selec-
tively catering malicious content towards mobile users but also that
GSB currently suffers from poor coverage trying to protect mobile
users when it comes to these malicious URLs.
Lack of coverage and delay in blacklisting. We find that GSB
only labels 92 out of the 3,746malicious pages on the same daywe de-
tect them.Evenafter 60days,GSBfinds 32% lessmaliciouspages than
we do. Additionally, a significant fraction of the GSB labels are false
positives4 due to the dynamic nature of TDSs, which redirect users

3We consider a gTLD to be new if it was introduced after 2011.
4GSB false positives fall into the error, original content, parked and gambling labels,
with a secondary manual analysis confirming these results.
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to different destination pages at each visit, and the destination pages
themselves changing over time. Finally, we confirm findings about
the delay of blacklisting observed in other contexts [47], finding an
average of seven-day delay for GSB to detect malicious pages.

6.4 Classifier Performance
In light of the poor blacklist coverage we observed, we evaluate our
classifier predicting whether a redirection chain will lead to a mali-
cious page holds promise. We find our classifier achieves an average
99.0% accuracy and 92.7% F1 score (evaluated using 10-fold cross-
validation) in labeling redirection chains asmalicious or benign. Our
classifier has a large area (0.95) under the precision-recall curve,with
a particularly good trade-off at (0.89: recall, 0.9: precision).

Thus, our random forest classifier is able to identify the majority
of malicious redirection chains with a decent precision before users
would land on them. If a high precision is required (to accommodate
base-rate issues and minimize false alarms), the classifier can still
identify more than one third of the malicious pages proactively, as
shown by the (0.42: recall, 0.99: precision) point.

Adversarial considerations.While the classifier performance ap-
pears satisfactory, we have to assume an adversary would spare no
effort in trying to evade classification. Fortunately, features based
on the redirection chain (e.g., chain length) could be economically
costly for an adversary to evade. First, evading many of these fea-
tures would restrict usage of TDSs, and thus, wouldmake user traffic
acquisition more costly. Second, without complex redirections, it
becomes easier to automatically blacklist miscreants’ domains. Sim-
ilarly, our features related to the TLDs used would be a burden for
an adversary to evade as these miscreants usually select TLDs, for at
least some of the redirection hops, where registering domain names
is cheap and convenient to decrease the cost of blacklisting.

URL and domain name-related features are moderately hard to
evade as some of the URL features are inherent to the redirection
hops the adversary does not necessarily control. For example, a traf-
fic redirection service that is not particularlymalicious, but that does
not care about the safety of the users, might not change how it func-
tions to aid its malicious customers. Some domain-related features
might not be trivial for an adversary to evade as short domains are
scarce and random domains are easier to detect. Miscreant would
have to continuously generate longer but plausible sounding domain
names. In short, our proposed classifier achieves reasonably good
performance and should be reasonably robust to evasion.

7 DISCUSSION

Protecting users.Our machine learning model could be used, for
example, as a browser extension to warn or block users before they
are exposed to malice. Unlike previous work that relies on precal-
culated malicious graph topology [16, 27, 28, 51], our classifier only
uses features observed at redirection time, making our model gen-
eralizable to any malicious activity that redirects users in a similar
fashion as theTDSswe study. Such amechanismwould be aplausible
complement to blacklisting, especially considering the inadequate
coverage of existing blacklists.

Infrastructure take-down.Given the sharing of TDS infrastruc-
ture among different types of abusive content, our results suggest

that correct prioritization of TDS take-downs by law enforcement
has the potential to curb multiple kinds of abuse simultaneously.

Future of online crime research.Whether we consider academic
research, security industry or lawenforcement, going forward,when
security practitioners attempt to discover malicious content online,
theymust deploy their crawlers frommultiple vantage points, mit-
igate a variety of cloaking techniques and emulate different form
factors (i.e., desktop and mobile). To inspire more research in this
area, we open-sourced ODIN [18] and make the data collected avail-
able to researchers upon request.

8 CONCLUSION
This paper introduced ODIN, a measurement infrastructure to study
for two months user differentiation, cloaking, and business integra-
tion in four different traffic sources that use TDSs. We found that
these traffic sources often integrate their business model and send
users to the sameTDSs andmalicious destinationpages.Our analysis
clearly demonstrates that phone and desktop users are redirected
to different malicious landing pages. We also observed a significant
amount of user-agent, referrer header field, and IP address-based
cloaking. Altogether, when visiting URLs posing as six different
types of crawlers, ODIN was able to unearth 81% more malicious
landing pages compared to using only the most efficient crawler
by itself. We also discovered that popular blacklists, including GSB,
present limited coverage of malicious pages especially those tar-
geting mobile users. Overall, our findings show that future studies
measuring online crimemust deploy their crawlers frommultiple
vantage points, address cloaking and emulate different types of users.
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